

- Уравнения/Тригонометрические/ Простейшие уравнения
- ЕГЭ Профиль/Задание №6/
 Тригонометрические уравнения
- Алгебра 10 / Тригонометрические уравнения/Простейшие уравнения

Простейшие тригонометрические уравнения

- 1. Простейшие уравнения и их частные случаи
 - 2. Отбор корней на заданном промежутке
- 3. ЕГЭ Профиль Задание №6. Отбор корней с условием

1. Простейшие тригонометрические уравнения и их частные случаи

Примеры

Решить уравнения:

No1.
$$\sin x = \frac{1}{2}$$

No2.
$$\sin x = -\frac{\sqrt{3}}{2}$$
No4.
$$\cos x = \frac{\sqrt{2}}{2}$$

No 3.
$$\sin x = 0$$

No4.
$$\cos x = \frac{\sqrt{2}}{2}$$

No5.
$$\cos x = -\frac{1}{2}$$

No6.
$$\cos x = -1$$

No7.
$$tgx=1$$

No.
$$ctgx = -\sqrt{3}$$

No9.
$$tgx = 0$$

• *Tecm* 1. Простейшие тригонометрические уравнения и их частные случаи

Вариант 1

Решите уравнения:

$$\cos x = 1$$

$$\sin x = -1$$

No3.
$$ctgx = 0$$

No4.
$$\sin x = \frac{\sqrt{2}}{2}$$

No.
$$\cos x = -\frac{\sqrt{3}}{2}$$

No6.
$$tgx = -\sqrt{3}$$

$$N_{\circ}7. \quad \cos x = -\frac{\sqrt{2}}{2}$$

No.
$$tgx = \sqrt{3}$$

No9.
$$\cos x = \frac{\sqrt{3}}{2}$$

No 10.
$$\sin x = \frac{\sqrt{3}}{2}$$

No11.
$$ctgx = \frac{1}{\sqrt{3}}$$

No1.
$$\sin x = 1$$

No2.
$$\cos x = 0$$

No3.
$$tgx = -1$$

N₂4.
$$\sin x = -\frac{\sqrt{2}}{2}$$

$$N_{9}5.$$
 $ctgx = \sqrt{3}$

No6.
$$tgx = \frac{1}{\sqrt{3}}$$

No.
$$\cos x = \frac{1}{2}$$

N₂8.
$$\sin x = -\frac{1}{2}$$

N₂9.
$$ctgx = -\frac{1}{\sqrt{3}}$$

No 10.
$$tgx = -\frac{1}{\sqrt{3}}$$

No. 11.
$$\cos x = -\frac{\sqrt{2}}{2}$$

■ *Ответы (тест)* 1. Простейшие тригонометрические уравнения и их частные случаи

	N. 4	N. a	N. a	M. 4	M. F	N.Z
_	Nº1	№2	Nº3	№4	№5	Nº6
Bap.1	$2\pi k$	$-\frac{\pi}{2} + 2\pi k$	$\frac{\pi}{2} + \pi k$	$\frac{\pi}{4} + 2\pi k;$	$\pm \frac{5\pi}{6} + 2\pi k$	$-\frac{\pi}{3} + \pi k$
				$\frac{3\pi}{4} + 2\pi k$		
	№7	№8	№9	№10	№11	
	$\pm \frac{3\pi}{4} + 2\pi k$	$\frac{\pi}{3} + \pi k$	$\pm \frac{\pi}{6} + 2\pi k$	$\frac{\pi}{3} + 2\pi k$	$\frac{\pi}{3} + \pi k$	
				$\frac{2\pi}{3} + 2\pi k$		
Bap.2	Nº1	№2	Nº3	№4	№5	Nº6
	$\frac{\pi}{2} + 2\pi k$	$\frac{\pi}{2} + \pi k$	$-\frac{\pi}{4} + \pi k$	$-\frac{\pi}{4} + 2\pi k$	$\frac{\pi}{6} + \pi k$	$\frac{\pi}{6} + \pi k$
				$-\frac{3\pi}{4} + 2\pi k$		
	№7	Nº8	№9	№10	№11	
	$\pm \frac{3\pi}{4} + 2\pi k$	$-\frac{\pi}{6} + 2\pi k;$	$-\frac{\pi}{3} + \pi k$	$-\frac{\pi}{6} + \pi k$	$\pm \frac{3\pi}{4} + 2\pi k$	
		$-\frac{5\pi}{6} + 2\pi k$				

2. Отбор корней на заданном промежутке

Примеры

- №1. Найдите корень уравнения $\cos 2x = -\frac{\sqrt{3}}{2}$ на промежутке $180^{\circ} < x < 270^{\circ}$.
- №2. Найдите корень уравнения $1 + 2\sin\frac{2\pi x}{3} = 0$ на промежутке 1 < x < 2.
- №3. Найдите корень уравнения $ctg\left(\frac{\pi}{4}(x-1)\right) = -1$ на промежутке 1 < x < 7.

Тест 2. Отбор корней на заданном промежутке

Вариант 1

- 1. Найдите корень уравнения $\cos \frac{2x}{5} = 0$ на промежутке $180^{\circ} < x < 270^{\circ}$.
- **2.** Найдите корень уравнения tg3x = -1 на промежутке $0^{\circ} < x < 105^{\circ}$.
- 3. Найдите корень уравнения $1 2\sin\frac{4\pi x}{3} = 0$ на промежутке 0 < x < 0, 5 .
- 4. Найдите корень уравнения $\sin\!\left(\frac{\pi}{2}(x\!-\!3)\right)\!=\!1$ на промежутке $3\!<\!x\!<\!8$.

- 1. Найдите корень уравнения $\sin \frac{3x}{2} = -1$ на промежутке $0^{\circ} < x < 270^{\circ}$.
- **2.** Найдите корень уравнения $tg\,2x = \frac{1}{\sqrt{3}}$ на промежутке $90^{\circ} < x < 180^{\circ}$.
- 3. Найдите корень уравнения $\sqrt{3} + 2\cos\frac{\pi x}{15} = 0$ на промежутке 12 < x < 17.
- **4.** Найдите корень уравнения $\cos\!\left(\frac{\pi}{2}(x\!-\!2)\right)\!=\!0$ на промежутке $3\!<\!x\!<\!7$.

Ответы (тест)

2. Отбор корней на заданном промежутке

	№ 1	№2	Nº3	№4
Bap.1	225	45	0,125	4
Bap.2	180	105	12,5	5

3. ЕГЭ Профиль Задание №6. Отбор корней с условием

Примеры

- №1. Найдите корень уравнения $\cos \frac{\pi (4x-7)}{3} = \frac{1}{2}$. В ответе запишите наибольший отрицательный корень.
- №2. Найдите корень уравнения $\sin \frac{\pi(x-3)}{4} = -\frac{\sqrt{2}}{2}$. В ответе напишите наименьший положительный корень.
- №3. Найдите корень уравнения $tg\frac{\pi(8x+9)}{3} = -\sqrt{3}$. В ответе запишите наибольший отрицательный корень.

• **Tecm** 3. ЕГЭ Профиль Задание №6. Отбор корней с условием

Вариант 1

- 1. Найдите корень уравнения $\cos \frac{\pi(x+7)}{4} = \frac{\sqrt{2}}{2}$. В ответе запишите наибольший отрицательный корень.
- **2.** Найдите корень уравнения $\sin \frac{\pi(x-1)}{3} = \frac{\sqrt{3}}{2}$. В ответе напишите наименьший положительный корень.
- 3. Найдите корень уравнения $\sin \frac{\pi(x-4)}{4} = -\frac{\sqrt{2}}{2}$. В ответе напишите наибольший отрицательный корень.
- 4. Найдите корень уравнения $tg\frac{\pi(x-1)}{4}\!=\!-1$. В ответе напишите наименьший положительный корень.

- 1. Найдите корень уравнения $\cos \frac{\pi(2x-2)}{6} = \frac{\sqrt{3}}{2}$. В ответе запишите наибольший отрицательный корень.
- **2.** Найдите корень уравнения $\sin \frac{\pi(2x-3)}{6} = -0.5$. В ответе напишите наибольший отрицательный корень.
- 3. Найдите корень уравнения $\sin \frac{\pi(x-8)}{4} = 1$. В ответе напишите наименьший положительный корень.
- 4. Найдите корень уравнения $tg \frac{\pi(x+4)}{6} = \frac{1}{\sqrt{3}}$. В ответе напишите наименьший положительный корень.

Вариант 3

- 1. Найдите корень уравнения $\cos \frac{\pi (4x+5)}{3} = \frac{1}{2}$. В ответе запишите наибольший отрицательный корень.
- 2. Найдите корень уравнения $\sin \frac{\pi (4x-3)}{4} = 1$. В ответе напишите наибольший отрицательный корень.
- 3. Найдите корень уравнения $\sin \frac{\pi(x+4)}{3} = -\frac{\sqrt{3}}{2}$. В ответе напишите наименьший положительный корень.
- 4. Найдите корень уравнения $\sin \frac{\pi (2x+1)}{6} = 0,5$. В ответе напишите наименьший положительный корень.
- 5. Найдите корень уравнения $tg\frac{\pi(2x+1)}{4}=1$. В ответе напишите наибольший отрицательный корень.

- 1. Найдите корень уравнения $\cos\frac{\pi(8x-7)}{3} = \frac{1}{2}$. В ответе запишите наибольший отрицательный корень.
- 2. Найдите корень уравнения $\sin \frac{\pi(2x+1)}{4} = \frac{\sqrt{2}}{2}$. В ответе напишите наибольший отрицательный корень.
- 3. Найдите корень уравнения $\sin \frac{\pi (8x-9)}{4} = -1$. В ответе напишите наименьший положительный корень.
- 4. Найдите корень уравнения $tg \frac{\pi(2x+1)}{6} = \sqrt{3}$. В ответе напишите наибольший отрицательный корень.
- 5. Найдите корень уравнения $tg\frac{\pi(x+8)}{6}=-\frac{1}{\sqrt{3}}$. В ответе напишите наибольший отрицательный корень.

Ответы (тест) 3. ЕГЭ Профиль Задание №6. Отбор корней с условием

	№1	№2	Nº3	№4	№5
Bap.1	-6	2	-5	4	
Bap.2	-4,5	-1	2	3	
Bap.3	-1	-0,75	1	2	-2
Bap.4	-0,5	-3	0,875	-2,5	-3

Справочные материалы

✓ Для успешного решения простейших тригонометрических уравнений и их частных случаев воспользуемся тригонометрическим кругом. Его можно назвать «спасательным» кругом, т.к. он не даст вам утонуть в тригонометрическом океане понятий, значений, формул и т.д.

Пусть точка $M\left(x;y\right)$ принадлежит единичной окружности, тогда

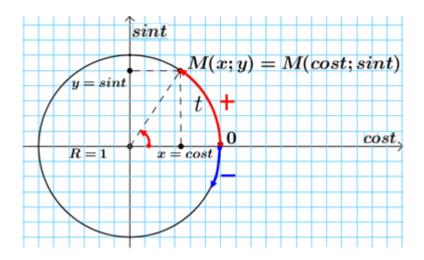
$$M(x;y) = M(\cos t; \sin t)$$
, ede $t -$

путь,

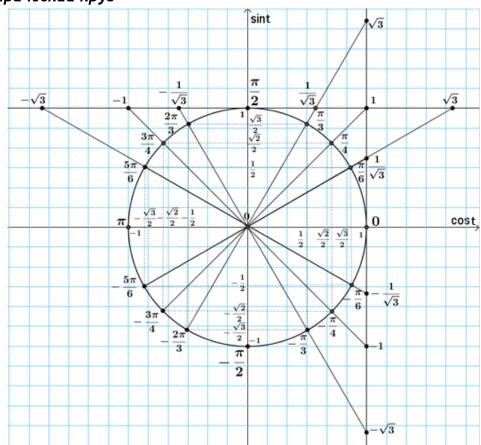
пройденный по окружности от начала отсчета.

 $\cos t = x$ (абсцисса точки единичной окружности)

 $\sin t = y$ (ордината точки единичной окружности)



■ Тригонометрический круг



• Простейшие тригонометрические уравнения

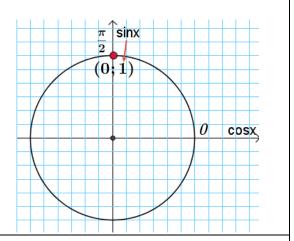
Уравнение	Формулы решений	Решение по кругу
$\sin x = a$	$x = (-1)^n \arcsin a + \pi n, n \in \mathbb{Z}$ или $\begin{bmatrix} x = \arcsin a + 2\pi k \\ x = \pi - \arcsin a + 2\pi k \end{bmatrix}, k \in \mathbb{Z}$ $-1 \le a \le 1,$ $\arcsin(-a) = -\arcsin a$	$\pi - arcsina$ π 0 0 0 0
$\cos x = a$	$x = \pm \arccos a + 2\pi k, k \in \mathbb{Z}$ $-1 \le a \le 1,$ $\arccos(-a) = \pi - \arccos a$	arccosa $arccosa$ $arccosa$ $arccosa$
tgx = a	$x = arctga + \pi k, k \in \mathbb{Z}$ $a \in \mathbb{R},$ $arctg(-a) = -arctga$	π a
ctgx = a	$x = arcctga + \pi k, \ k \in \mathbb{Z}$ $a \in \mathbb{R},$ $arcctg(-a) = \pi - arcctga$	π 0 0 $\cos x$

√ Частные случаи решения простейших тригонометрических уравнений

Уравнение	Формулы решений	Решение по кругу
$\cos x = 1$	$x = 2\pi k$	sinx
Найдем на круге точку, абсцисса которой равна 1	На круге одна точка с такой абсциссой, еще раз попадаем на нее через целое число кругов $2\pi k$.	0 cosx (1;0)
$ \cos x = 0 \\ (ctgx = 0) $	$x = \frac{\pi}{2} + \pi k$	$ \begin{array}{c} \pi \\ \sin x \\ \hline (0; 1) \end{array} $
Найдем на круге точки, абсциссы которых равны 0.	На круге две точки с такой абсциссой, попадаем на них через полкруга πk .	(0; -1)
$\cos x = -1$ Найдем на круге точку, абсцисса которой равна -1.	$x = \pi + 2\pi k$ На круге одна точка с такой абсциссой, еще раз попадаем на нее через целое число кругов $2\pi k$.	π (-1;0) θ cosx
$ \sin x = 0 \\ (tgx = 0) $	$x\!=\!\pi k$ На круге две точки с такой	sinx
Найдем на круге точки, ординаты которых равны 0.	ординатой, попадаем на них через полкруга πk .	$\pi = (-1;0) \qquad (1;0) \qquad 0 \qquad \text{cosx}$

 $x = \frac{\pi}{2} + 2\pi k$

Найдем на круге точку, ордината которой равна 1. На круге одна точка с такой ординатой, еще раз попадаем на нее через целое число кругов $2\pi k$.



$$\sin x = -1$$

 $x = -\frac{\pi}{2} + 2\pi k$

Найдем на круге точку, ордината которой равна 1. На круге одна точка с такой ординатой, еще раз попадаем на нее через целое число кругов $2\pi k$.

